MATH 122B: COMPUTATIONAL FINAL

No calculator or notes. All contours are assumed to have positive orientation.
(1) Compute using any method $\int_{|z|=4} \frac{2 z-4}{z(z-2)^{2}} d z$.
(2) Compute the residue of $\frac{1}{z^{3} \sin (z)}$ at $z=0$.
(3) Compute $\int_{0}^{\infty} \frac{\sqrt{x}}{x^{3}+1}$.
(4) Compute $\int_{0}^{\infty} \frac{d x}{x^{5}+1}$.
(5) Compute $\int_{-\infty}^{\infty} \frac{\sin ^{2}(x) d x}{x^{2}}$.

Solution

(1) We can first simplify the expression as

$$
\int_{|z|=4} \frac{2(z-2)}{z(z-2)^{2}} d z=2 \int_{|z|=4} \frac{d z}{z(z-2)}
$$

By straightforward application of the residue theorem, we have

$$
\begin{aligned}
2 \int_{|z|=4} \frac{d z}{z(z-2)} & =2 \pi i\left(\operatorname{Res}\left(\frac{1}{z(z-2)}, 0\right)+\operatorname{Res}\left(\frac{1}{z(z-2)}, 2\right)\right) \\
& =2 \pi i(-1 / 2+1 / 2)=0 .
\end{aligned}
$$

(2) Since $\sin (0)=0$ and $\sin ^{\prime}(0)=\cos (0)=1 \neq 0$, it is a simple zero, hence the expression has a pole of order 4 at $z=0$. One can then apply the residue formula, however in this case, it is easier to compute the Laurent series:

$$
\begin{aligned}
\frac{1}{z^{3} \sin (z)} & =\frac{1}{z^{3}} \frac{1}{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots} \\
& =\frac{1}{z^{4}} \frac{1}{1-\left(\frac{z^{2}}{3!}-\frac{z^{4}}{5!}+\cdots\right)} \\
& =\frac{1}{z^{4}}\left(1+\frac{z^{2}}{3!}-\frac{z^{4}}{5!}+O\left(z^{4}\right)\right)
\end{aligned}
$$

and since there is no $\frac{1}{z}$ term, the residue at $z=0$ is 0 .
(3) One way is to use the key hole contour. An alternative way is to use the indented wedge:

We need to do this because $z=0$ is a branch point, hence not holomorphic there. The angle of the wedge is at $\theta=\frac{2 \pi i}{3}$. Inside contains a simple pole at $z=e^{\pi i / 3}$. Now for large $|z|=R$, we have

$$
\left|\frac{\sqrt{z}}{z^{3}+1}\right| \leq \frac{M}{R^{5 / 2}}
$$

and for small $|z|=r$, we have

$$
\left|\frac{\sqrt{z}}{z^{3}+1}\right| \leq \sqrt{r}
$$

hence accounting for the circumference, the integral tends to 0 as $R \rightarrow \infty$ and $r \rightarrow 0$. For the diagonal, it can be parametrized by $z=x e^{2 \pi i / 3}$, with x going from R to r, hence

$$
\int_{R}^{r} \frac{\left(x e^{2 \pi i / 3}\right)^{1 / 2} e^{2 \pi i / 3} d x}{x^{3}+1}=\int_{r}^{R} \frac{\sqrt{x} d x}{x^{3}+1} .
$$

By residue theorem, the integral of the whole contour is $2 \pi / 3$. Computing by each piece, we have that the integral is $2 \int_{0}^{\infty} \frac{\sqrt{x} d x}{x^{3}+1}$, hence the answer is $\pi / 3$.
(4) This contour can be evaluated using a wedge since it is not a multi-valued function hence we do not need to worry about the branch points. A method is given in the take home exam, the answer is $\frac{\pi}{5 \sin (\pi / 5)}$.
(5) Integrating by parts, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\sin ^{2}(x) d x}{x^{2}} & =-\left.\frac{\sin ^{2}(x)}{x}\right|_{-\infty} ^{\infty}+2 \int_{-\infty}^{\infty} \frac{\sin (x) \cos (x) d x}{x} \\
& =2 \int_{-\infty}^{\infty} \frac{\sin (2 x) d x}{2 x} \\
& =\int_{-\infty}^{\infty} \frac{\sin (t)}{t} d t=\pi
\end{aligned}
$$

where we used the change of variables $t=2 x$. The boundary terms vanish by squeeze theorem since $\left|\sin ^{2}(x)\right| \leq 1$, the last integral was done in lecture and in the practice final.

